Bacterial diversity of Gymnodinium catenatum and its relationship to dinoflagellate toxicity

نویسندگان

  • David H. Green
  • Mark C. Hart
  • Susan I. Blackburn
  • Christopher J. S. Bolch
چکیده

Gymnodinium catenatum Graham (Dinophyceae) is one of several marine dinoflagellates responsible for outbreaks of paralytic shellfish poisoning (PSP), a problem that is considered to be increasing globally. Bacteria associated with these dinoflagellates have been implicated as potentially involved with the production of PSP toxins, and this study sought to identify whether there was a link between the toxicity of G. catenatum laboratory cultures and the diversity of the associated bacterial community. Bacterial 16S rRNA gene clone libraries were constructed and sequenced to identify the bacterial diversity of 7 G. catenatum cultures of 2 contrasting toxicity levels. Phylogenetic membership and community structure were examined, including the use of UniFrac, FST and LIBCOMPARE. No statistically significant differences that distinguished between toxic and low-toxicity G. catenatum cultures were identified in the bacterial community membership or structure. Furthermore, no coherent phylogenetic group of bacteria was observed to co-associate with culture toxicity. However, observed variation in bacterial diversity and community structure was based on the geographic origin of the G. catenatum cultures. Overall, while it was not possible to identify an apparent link between bacterial diversity and the toxicity of G. catenatum cultures, we suggest, on the balance of this study and others, that bacterial influence on PSP toxin production may be indirect and mediated by the effects of the bacterial community on algal physiology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The toxic dinoflagellate Gymnodinium catenatum: an invader in the Mediterranean Sea

The distribution of the toxic dinoflagellate Gymnodinium catenatum Graham in the Mediterranean Sea was once restricted to the eutrophic waters of the Alborán Sea. In September 1999, this taxon was found for first time in the Algerian basin, being the dominant species at subsurface depths (~1 cell mL–1) associated with low salinity waters. The geographical expansion of this exotic species is not...

متن کامل

Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum

Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum, we test...

متن کامل

Ecological and Physiological Studies of Gymnodinium catenatum in the Mexican Pacific: A Review

This review presents a detailed analysis of the state of knowledge of studies done in Mexico related to the dinoflagellate Gymnodinium catenatum, a paralytic toxin producer. This species was first reported in the Gulf of California in 1939; since then most studies in Mexico have focused on local blooms and seasonal variations. G. catenatum is most abundant during March and April, usually associ...

متن کامل

Bacterial Community Affects Toxin Production by Gymnodinium catenatum

The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communitie...

متن کامل

Docking Simulation of the Binding Interactions of Saxitoxin Analogs Produced by the Marine Dinoflagellate Gymnodinium catenatum to the Voltage-Gated Sodium Channel Nav1.4.

Saxitoxin (STX) and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav), impeding passage of Na⁺ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010